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Single-Image Signal-to-Noise Ratio Estimation
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Summary: A method for estimating the signal-to-noise
ratio from a single image is presented in this paper. The au-
tocorrelation-based technique requires that image details
be correlated over distances of a few pixels, while the
noise is assumed to be uncorrelated from pixel to pixel. The
latter is shown to be a good approximation in the case of
scanning electron microscope (SEM) images provided that
the video signal is not band limited. The noise component
is derived from the difference between the image autocor-
relation at zero offset and an estimate of the correspond-
ing noise-free autocorrelation. Nonlinear effects intro-
duced by intensity saturation and their implications on the
image signal-to-noise ratio are also discussed.
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Introduction

Quantification of the signal-to-noise ratio (SNR) is im-
portant in image acquisition procedures in electron mi-
croscopy and other fields where the image is degraded by
noise. In particular, with scanning electron microscopy
(SEM), the tradeoff with image resolution is often SNR.
The definition of SNR varies according to the field. In
electrical engineering and statistical optics, it is defined as
the energy (variance) ratio between signal and noise, while
in the electron microscopy literature the square root of
this quantity is usually considered. 

The cross-correlation technique could be used to esti-
mate the SNR of band-limited stochastic functions. Frank
and Al-Ali (1975) formulated the use of cross correlation
to derive the SNR from two microscope images of the

same specimen area. The method distinguishes between
image detail and random noise, since true image informa-
tion detail is present in both copies of the micrograph
whereas random noise, although present in both cases, is
not correlated from pixel to pixel. Erasmus (1982) used the
same method for measuring the improvement in SNR with
digital image averaging. More recently, Joy et al. (2000)
used the cross-correlation function to evaluate the resolu-
tion and SNR performance of critical dimension (CD)-
SEMs. In another field, Sijbers et al. (1996) based their
SNR evaluation of magnetic resonance imaging (MRI)
images on the seminal work of Frank and Al-Ali. However,
the primary disadvantage of using two-image SNR deter-
mination methods is the requirement that the two images
be perfectly aligned. Moreover, it cannot be used to deter-
mine the SNR of an extant image such as a stored image
or micrograph.

This paper presents a method that uses one image instead
of two for estimating the SNR. Since only a single image
is required, the proposed method is not constrained by
image registration requirements, and it can be applied in
real time in cases where image drift is present in the SEM.
In a modern personal computer (PC) SEM, adaptive con-
trol of the number of averages to attain a desired SNR can
be envisaged using this technique. 

Calculating Signal-to-Noise Ratio from Two 
Images

Frank (1980) developed the two-image SNR theory
based on the cross correlation of two image acquisitions of
the same object. The cross-correlation coefficient of the two
images can be defined as

(1)

where φ12(0) is the peak height of the cross-correlation
function (CCF) of the two images in aligned position, and
µ1,µ2 and σ1,σ2 are the means and variance values of the two
images, respectively. The SNR is then

(2)
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where it is assumed that the two image acquisitions con-
tain the same signal, but with uncorrelated noise of zero
mean. The procedure for estimating the SNR thus involves
choosing two images from the experimental image set,
aligning them, and evaluating Eq. (2). To reduce the vari-
ance in the SNR estimate, an average of estimates can be
obtained from several randomly selected image pairs
(Frank 1996). 

Single-Image Estimate of Signal-to-Noise Ratio

The proposed method for deriving the SNR from one
image starts from Eq. (1) for two images of identical sig-
nal but uncorrelated noise, viz.

φ12(0) is the CCF between images f1(x,y) = s1(x,y) + n1(x,y)
and f2(x,y) = s2(x,y) + n2(x,y) at zero offset, where s1 and
s2 represent the noise-free images, and n1 and n2 are the
noise content of these two images. Since we are dealing
with images, the CCF, φ12(x,y), is two-dimensional. For
simplicity, in the following we will normally illustrate the
correlation function with offset along the x direction at zero
y offset. 

Since (1) n1 and n2 are uncorrelated, and (2) the noise is
assumed to be uncorrelated with the signal, then 

(3)

where φ12
NF(0,0) denotes the CCF between the two noise-

free images, s1 and s2, at zero offset. Furthermore, since the
noise-free images are identical, we have s1 = s2 and thus

(4)

where φ11
NF(0,0) is the value of the autocorrelation function

(ACF) of the noise-free image at zero offset.
Since the two images have identical signal corrupted

with noise of zero mean, the mean values of both images
are identical. Thus

µ1 = µ2 (5)

The variance of image 1, σ1, is given by
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Similarly for image 2,

Since φ11(0,0) = φ22(0,0), we obtain

σ1
2 = σ2

2 = σ1 = σ2 (6)

From Eqs. (4)–(6),

(7)

Thus, the SNR of a single image can be obtained from the
ACF curve (Fig. 1). As shown in the figure, φ11(0,0) –
φ11

NF(0,0) represents the noise energy and φ11
NF(0,0) –µ1

2

represents the signal energy, where µ1is the mean value of
image,

Unfortunately, with a single image corrupted by noise, (s1
+ n1), φ11

NF(0,0) cannot be obtained directly since the noise
n1 is correlated at zero offset and
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FIG. 1 Representation of signal and noise components on a plot of
the autocorrelation function. The filled markers represent the data de-
rived from the image.
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Since φ11
NF(0,0) is unknown, a method for estimating

φ11
NF(0,0) is required. 

Estimation of Noise-Free Autocorrelation 

To estimate φ11
NF(0,0), we need to separate the signal from

the noise based solely on the information available in the
single image. On a pixel-by-pixel basis, it is impossible to
distinguish the signal from the noise unless some a priori
assumptions are made about the nature of the signal and
noise.

First, consider the noise. A primary assumption of the
proposed technique is that the noise is uncorrelated from
pixel to pixel. For noise that is white and stationary, its
power spectrum (optical transfer function) is uniform.
Since the power spectrum and the ACF are a Fourier trans-
form pair, then the ACF of such noise is a delta function at
zero offset (Fig. 2a). On the other hand, if the noise is non-
white, then the ACF will have finite values at offsets other
than zero (Figure 2b). For SEM secondary emission sig-

nals limited by shot-noise in the beam, the power spectrum
of the noise is generally white, provided that the video sig-
nal is not band-limited (although cold-field emission
sources with significant flicker noise will give rise to a pink-
ish content). This is easily demonstrated by analyzing the
ACF of the image acquired from a featureless specimen.
Figure 3 shows the image of a bare silicon wafer and the
corresponding ACF at small offsets calculated in the x and
y directions. The ACF in the x direction shows a transition
over two pixels, whereas the ACF in the y direction is in-
deed a delta function at the origin. The disparity arises from
the finite impulse response time of the SEM video chain,
which shows up as image smearing in the direction of the
raster scan (x direction), but not in the y direction since an
entire line period has lapsed between two adjacent pixels
in the direction of the frame scan. At slower scan rates, the
ACF in the x direction would tend toward a delta function.

For the signal part, specimen details that are imaged as
single pixels cannot be distinguished from noise. Hence,
for example, if we have a single image of a highly detailed
specimen taken at low magnification, such that the image

FIG. 2 Fourier transform pairs for (a) white noise and (b) band-limited noise.
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contrast varies greatly from pixel to pixel, then one is un-
able to determine the extent to which the image is corrupted
by noise (Fig. 4). On the other hand, SEM images taken at
magnifications sufficient to define the features of the spec-
imen will have details covering at least several image pix-
els. In other words, such details correlate over distances of
a few pixels. This then provides a means to estimate
φ11

NF(0,0) from the ACF at small offsets from the origin. The
noise component, which is confined to the origin of the
ACF, is then φ11(0,0) – 〈φ11

NF(0,0)〉

The simplest estimate of φ11
NF(0,0) is to assume that it is

the same as the ACF at neighboring offsets (Fig. 5a), that is,

(8a)

Returning to two dimensions (Fig. 5b), if we consider unit
offset in the x and y directions of ACF, the values can be
averaged,

φ φ φ11 11 110 0 1 0 1 0NF ( , ) , ,≈ ( ) = −( )

FIG. 3 (a) Noisy SEM image of bare silicon wafer (256×256 pixels). The raster line scan is in the x direction. (b) Autocorrelation function at
small offsets along the x direction (y = 0) and the y direction (x = 0).

FIG. 4 (a) Noise-free and (b) noisy image of the same area of silver paint taken at low magnification. Image size = 256×256 pixels. Horizon-
tal field width = 500 µm.
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(8b)

This estimate would be reasonable if the ACF of the noise-
free image changes slowly around the origin, which would
be true for images where the details correlate over many
pixels.

A better approach might be to apply a first-order ex-
trapolation. If we consider the x direction, as shown in Fig-
ure 6, the adjacent points φ11(1,0) and φ11(2,0) can be used
to project φ11

NF(0,0) and would in most cases be an im-
provement on the estimate of Eq. (8a). Higher-order func-
tions, such as polynomials, can be used to fit the ACF
curve, but whether the results returned by such fitting func-
tions would provide a closer estimate will depend on the
nature of the image.

To illustrate the above methods for estimating φ11
NF(0,0),

heavily averaged images of silver paint that are practically
free of noise are first taken at magnifications (as indicated
on the SEM) of 5k× and 1k×. White noise is then added to
the images, as shown in Figure 7a and b, respectively, re-
sulting in the corresponding ACFs shown at small offsets
in the x direction. Artificial addition of noise is carried out
instead of capturing a second noisy image to avoid the un-
certainties associated with comparing two images. The ac-
tual values of φ11

NF(0,0) are derived from the original noise-
free image. In both cases, the simple approximation of Eq.
8(a) invariably underestimates φ11

NF(0,0), while the first-
order extrapolation method underestimates in one case
and overestimates in the other. For these examples, the lat-
ter method provides better estimates (Table I).
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Implementation

The discrete cross correlation between two images of
size N2, f1(x,y) and f2(x,y), is given by

It follows that the autocorrelation of image f1(x,y) is then
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FIG. 5 Estimation of φ11
NF(0,0) by assigning the autocorrelation function values at neighboring offsets (a) along the x-direction, (b) along both

x and y directions.

FIG. 6 Estimation of φ11
NF(0,0) by a first-order extrapolation from

neighboring offsets along the x-direction.
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TABLE I Parameters derived from the noisy images. The actual value of φ11
NF(0,0) is obtained from the original noise-free images 

before noise was added in artificially

〈φ11
NF(0,0)〉

φ11
NF(0,0) 〈φ11

NF(0,0)〉 1st order
µ1

2 φ11(0,0) Actual value = φ11(1,0) extrapolation

5k× image 18045 21015 20421 20345 20387
(SNR = 4.00) (SNR = 3.43) (SNR = 3.73)

1k× image 17061 18992 18367 18312 18408
(SNR = 2.09) (SNR = 1.84) (SNR = 2.31)

Abbreviation: SNR=signal-to-noise ratio.

FIG. 7 Images of silver paint with added noise at (a) higher magnification (horizontal field width = 5 µm), and (b) lower magnification (hori-
zontal field width = 25 µm), and corresponding autocorrelation function (ACF) along the x-direction, showing the two techniques to estimate the
noise-free image autocorrelation. Unfilled marker indicates the actual value of the ACF for the noise-free image. Images are 256×256 pixels.
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It is possible to evaluate the ACF via Fourier transforms
since, according to the Wiener-Khinchin theorem, the ACF
and the energy spectrum form a Fourier transform pair,

(10)

where

It is possible to compute the ACF via the discrete Fourier
transform using fast Fourier transform (FFT) techniques for
computational speed, but this is not the most efficient tech-
nique for deriving the SNR. In the present application of the
ACF, only the values of φ11(x,y) in the vicinity of the origin,
such as φ11(1,0) and φ11(0,1), are required to estimate
φ11

NF(0,0), and a direct computation of Eq. (9) will, in most
cases, require fewer multiplications—only N2 multiplications
are needed per point. While evaluating the ACF via the
Fourier transform returns the entire two-dimensional ACF, we
are only interested in a few values at and around the origin.

In the computation of the ACF, one needs to consider the
end effects. The practice to pad the ends of the array with
zero is not appropriate in the present application, as this will
exclude the contribution of the nonoverlapping ends to the
value of the ACF. For example, consider an image of uni-
form intensity. If the image is zero padded, then the ACF
will show a linear decrease from the origin (Fig. 8), where
one would have expected a uniform ACF assuming that the
image is part of a bigger picture of a similar intensity. In-
stead, it is suggested that the ends are padded with either
the average value of the image, or the image is wrapped
around, but only the N2 values contained within the origi-
nal image boundary are counted so as to preserve the total
energy content of the image.

Intensity Saturation

In addition to the assumptions made under “Estimation
of Noise-Free Autocorrelation” regarding the nature of the

f x y F u v1 1( , ) ( , )⇔

φ11 1 1 1

2
( , ) ( , ) ( , ) ( , )x y F u v F u v F u v⇔ ⋅ =∗

signal and noise components in SEM images, the issue of
intensity saturation should also be considered. The SEM
images are normally digitized as gray images with 256 in-
tensity levels, with 0 representing absolute black and 255
absolute white. Quite often, SEM images contain pixels at
either extreme of the intensity histogram, that is, they are
saturated, based on typical brightness and contrast settings
to produce pleasant-looking images that have the appear-
ance of “good” contrast. Nevertheless, the portion of the
histogram that represents saturated pixels is normally quite
small unless the user chooses to exaggerate the contrast in
the image.

The presence of noise broadens the histogram of the
noise-free image. With high noise levels, the effect of in-
tensity saturation changes the SNR of the image. If the his-
togram of the noise-free image is biased toward the black
level, then the addition of noise of nominally zero mean will
result in more pixels saturating at intensity level 0. Con-
versely, if the histogram is biased toward the white level,
noise will cause more pixels to saturate at 255.

Figure 9 illustrates the effect of changing the brightness
of a noisy image on the ACF. The brightness and contrast
of the original noise-free image were adjusted to give a
stretched histogram without much saturation. Noise was
then added to this image (Fig. 9a), and the brightness ad-
justed by 10 (Fig. 9b) and 100 (Fig. 9c) intensity levels. By
increasing the brightness values by 10, the ACF curve
translates upward, but this does not affect the SNR signif-
icantly as the mean of the image also increases corre-
spondingly provided that saturation does not occur. How-
ever, when a significant portion of the pixels is saturated
(Fig. 9c), the signal level decreases for both noise-free and
noisy images. As shown in Table II, for the noise-free
image, the signal drops marginally from 150 to 149 because
of a loss of image contrast with saturation, while the drop
in the signal level for the noisy image is far greater to
112.3. The reason for this is that µ1

2 for the noisy image is
now considerably lower than that for the noise-free image,
as the noise contribution to pixels at or near saturation is
on the whole negative since positive noise excursions can
at most saturate a pixel at 255. The same argument applies

FIG. 8 Effect of zero padding in the evaluation of the autocorrelation function (ACF) showing uniform image data and the corresponding ACF
in one dimension.
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FIG. 9 Effect of image saturation on autocorrelation function (ACF). Image of silver paint with added noise (horizontal field width = 5 µm),
intensity histogram, and ACF for (a) original image, (b) image with brightness increased by 10, and (c) image with brightness increased by 100
showing marked saturation at the white level.

TABLE II Parameters of original noise-free image and image with noise added at different brightness levels

Noise-free image Image + noise

Image µl
2 φ11

NF(0) Signal µ l
2 φ11(0) 〈φ11

NF(0)〉 Signal Noise SNR

f1(x,y) 17992 18142 150 17991 18788 18136.0 145.0 652.0 0.222
f1(x,y) + 10 20775 20925 150 20770 21574 20918.1 148.1 655.9 0.226
f1(x,y) + 100 54805 54954 149 53102 53635 53214.3 112.3 420.7 0.267

Abbreviation as in Table I.



336 Scanning Vol. 23, 5 (2001)

to the noise level which has dropped from 652.0 for the
starting image to 420.7 for the brightest image. However,
the compression of the noise is greater than the signal
compression, and this results in the apparent improvement
in SNR.

Conclusions 

A method for estimating the SNR of a single image
based on the autocorrelation function was developed. The
requirements are that the noise should be white and that de-
tails in the image should correlate over distances of at least
a few pixels, effectively separating the noise from signal.
The ability to determine the SNR from a single image al-
lows the technique to be applied to offline image analysis
as well as to online applications, where the requirement of
image registration with the traditional two-image tech-
nique is avoided. As the single-image technique needs
only moderate amounts of computation, it can be applied

to real-time SNR evaluation of SEM images and incorpo-
rated into the image averaging function to provide adaptive
averaging where SNR is the parameter.
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